Flexible Manufacturing systems A. Bottleneck Model Lec 4

Dr. Mirza Jahanzaib

Where to Apply FMS Technology

- The plant presently either:
 - Produces parts in <u>batches</u> or
 - Uses manned GT cells and management wants to automate the cells
- It must be possible to **group a portion of the parts** made in the plant into part families
 - The part similarities allow them to be processed on the <u>FMS workstations</u>
- Parts and products are in the mid-volume, mid-variety production range

Definition

- A highly automated GT machine cell, consisting of a group of processing stations (usually CNC machine tools), interconnected by an automated material handling and storage system, and controlled by an integrated computer system
- The FMS relies on the principles of GT
 - No manufacturing system can produce an unlimited range of products
 - An FMS is capable of producing <u>a single part</u> family or a limited range of part families

Flexibility Tests in an Automated Manufacturing System

To qualify as being <u>flexible</u>, a manufacturing system should satisfy the following criteria (<u>"yes"</u> answer for each question):

- 1. Can it process <u>different part styles</u> in a non-batch mode?
- 2. Can it accept changes in production schedule?
- 3. Can it respond gracefully to equipment malfunctions and breakdowns?
- 4. Can it <u>accommodate introduction of new part</u> designs?

Automated Manufacturing Cell

Automated manufacturing cell with two machine tools and robot. Is it a flexible cell?

Is the Robotic Work Cell Flexible?

1. Part variety test

– Can it machine different part configurations in a mix rather than in batches?

2. Schedule change test

Can production schedule and part mix be changed?

3. Error recovery test

- Can it operate if one machine breaks down?
 - Example: while repairs are being made on the broken machine, can its work be temporarily reassigned to the other machine?

4. New part test

– As new part designs are developed, can NC part programs be written off-line and then downloaded to the system for execution?

Types of FMS

- Kinds of operations
 - Processing vs. assembly
 - Type of processing
 - If machining, rotational vs. non-rotational
- Number of machines (workstations):
 - 1. Single machine cell (n = 1)
 - 2. Flexible manufacturing cell (n = 2 or 3)
 - 3. Flexible manufacturing system (n = 4 or more)

Single-Machine Manufacturing Cell

Flexible Manufacturing Cell

A two-machine flexible manufacturing cell for machining (photo courtesy of Cincinnati Milacron)

A five-machine flexible manufacturing system for machining (photo courtesy of Cincinnati Milacron)

Features of the Three Categories

FMS Types Level of Flexibility

1. Dedicated FMS

- Designed to produce a <u>limited variety of part styles</u>
- The complete universe of parts to be made on the system is known in advance
- Part family likely based on <u>product commonality</u> rather than <u>geometric similarity</u>

2. Random-order FMS

- Appropriate for <u>large part families</u>
- New part designs will be introduced
- Production schedule is subject to <u>daily changes</u>

Dedicated vs. Random-Order FMSs

FMS Components

- 1. Workstations
- 2. Material handling and storage system
- 3. Computer control system
- 4. Human labor

Workstations

- Load and unload station(s)
 - Factory interface with FMS
 - Manual or automated
 - Includes communication interface with worker to specify parts to load, fixtures needed, etc.
- CNC machine tools in a machining type system
 - CNC machining centers
 - Milling machine modules
 - Turning modules
- Assembly machines

Material Handling and Storage

• Functions:

- Random, <u>independent movement</u> of parts between stations
- Capability to handle a variety of part styles
 - Standard pallet fixture base
 - Work holding fixture can be adapted
- Temporary storage
- Convenient access for <u>loading</u> and <u>unloading</u>
- Compatibility with computer control

Material Handling Equipment

- Primary handling system establishes basic FMS layout
- Secondary handling system functions:
 - Transfers work from primary handling system to workstations
 - Position and locate part with sufficient accuracy and repeatability for the operation
 - Reorient part to present correct surface for processing
 - Buffer storage to maximize machine utilization

Five Types of FMS Layouts

- The layout of the FMS is established by the material handling system
- Five basic types of FMS layouts
 - 1. In-line
 - 2. Loop
 - 3. Ladder
 - 4. Open field
 - 5. Robot-centered cell

FMS In-Line Layout

- •Straight line flow, well-defined processing sequence similar for all work units
- •Work flow is from left to right through the same workstations
- No secondary handling system

Linear transfer system with secondary parts handling system at each workstation to facilitate flow in two directions

FMS Loop Layout

- •One direction flow, but variations in processing sequence possible for different part types
- Secondary handling system at each workstation

FMS Rectangular Layout

Rectangular layout allows recirculation of pallets back to the first station in the sequence after unloading at the final station

FMS Ladder Layout

 Loop with rungs to allow greater variation in processing sequence

FMS Open Field Layout

 Multiple loops and ladders, suitable for large part families

Robot-Centered Cell

 Suited to the handling of rotational parts and turning operations

FMS at Chance-Vought Aircraft

(courtesy of Cincinnati Milacron)

FMS for Sheet Metal Fabrication

FMS Benefits

- Increased machine utilization
 - Reasons:
 - 24 hour operation likely to justify investment
 - Automatic tool changing
 - Automatic pallet changing at stations
 - Queues of parts at stations to maximize utilization
 - Dynamic scheduling of production to account for changes in demand
- Fewer machines required
- Reduction in factory floor space required

- Greater responsiveness to change
- Reduced inventory requirements
 - Different parts produced continuously rather than in batches
- Lower manufacturing lead times
- Reduced labor requirements
- Higher productivity
- Opportunity for unattended production
 - Machines run overnight ("lights out operation")

FMS Planning and Design Issues

- Part family considerations
 - Defining the part family of families to be processed
 - Based on part similarity
 - Based on product commonality
- Processing requirements
 - Determine types of processing equipment required
- Physical characteristics of work parts
 - Size and weight determine size of processing equipment and material handling equipment

- Production volume
 - Annual quantities determined number of machines required
- Types of workstations
- Variations in process routings
- Work-in-process and storage capacity
- Tooling
- Pallet fixtures

FMS Operational Issues

- Scheduling and dispatching
 - Launching parts into the system at appropriate times
- Machine loading
 - Deciding what operations and associated tooling at each workstation
- Part routing
 - Selecting routes to be followed by each part

- Part grouping
 - Which parts should be on the system at one time
- Tool management
 - When to change tools
- Pallet and fixture allocation
 - Limits on fixture types may limit part types that can be processed

Quantitative Analysis of Flexible Manufacturing Systems

FMS analysis techniques:

- 1. Deterministic models
- 2. Queueing models
- 3. Discrete event simulation
- 4. Other approaches, including heuristics

Deterministic models

- 1. <u>Bottleneck model</u> estimates of production rate, utilization, and other measures for a given product mix
- 2. <u>Extended bottleneck model</u> adds work-in-process feature to basic model

Quantitative Analysis of Bottleneck model

Bottleneck Model

• In this model, output of production system has an upper limit, given that the product mix flowing through the system is FIXED.

1. Product mix: $\sum_{j=1}^{P} p_j = 1.0$

 p_j = fraction of total system output of style j.

P = total number of different parts styles made in the FMS during period of interest.

- 2. Workstation and Servers: it is possible to have two or more machines capable of performing the same operations.
 - s_i = number of servers at workstation i, where i= 1,2.....n.
- 3. **Process routing**: the process routing defines sequence of operations, the w/stn at which they are performed and associated processing times. t_{ijk} = Processing time which is total time that a production unit occupies a given w/stn server. i= station; j= part or product; k= sequence of operation

- 4. Work handling system: work handling system is designated as n+1 and s_{n+1} = number of carriers in the FMS handling system.
- 5. Transport time: t_{n+1} = the mean transport time required to move a part from one w/stn to next stn in the process routing.
- 6. Operation frequency: it is defined as the expected number of times a given operation in the process routing is performed for each work unit. eg. An inspection is performed once every four units, the freq = 0.25. f_{ijk} = operation freq for operation k in the process plan j at stn i.

1. FMS Operational Parameters

The average work load for the given station is defined as the mean total time spent at the station per part. It is calculated as:

$$WL_i = \sum_j \sum_k t_{ijk} f_{ijk} p_j$$

WLi = average work load for station i (min),

 t_{ijk} = processing time for operation k in the process j at station i (min),

 f_{ijk} = operation freq for oper k in part j at stn i. p_j = part mix fraction for part j. The average number of transports is equal to the mean number of operations in the process routing minus one.

$$n_t = \sum_i \sum_j \sum_k f_{ijk} p_j - 1$$

 n_t = mean number of transports

Computing the work load of the handling system:

$$WL_{n+1} = n_t t_{n+1}$$

 WL_{n+1} = work load of handling system (min), n_t = mean number of transports t_{n+1} = mean transport time per move (min)

2. System Performance Measures

Assumptions: 1. FMS producing at max possible rate; 2. Rate is constrained by bottleneck station in the system (highest workload per server).

Work load per server is

$$WL_i / S_i$$

The bottleneck is identified by finding max value of the ratio among all stations.

Let WL^*, s^*, t^* equal to WL, No. of servers, processing time for the bottleneck station resp

FMS max production rate of all parts is

$$R_p^* = \frac{S^*}{WL^*}$$

The above equation is valid if product mix is constant.

Individual part production rates can be obtained by multiplying R_p^* by the respective part mix ratios.

$$R_{pj}^* = p_j(R_p^*) = p_j \frac{s^*}{WL^*}$$

 R_{pj}^{*} = max prod rate of part style j (pc/min) and p_j = part mix fraction for style j

The <u>mean utilization</u> of each workstation is the <u>proportion of time that the servers at the</u> <u>station are working and not idle</u>.

$$U_{i} = \frac{WL_{i}}{s_{i}} \left(R_{p}^{*}\right) = \frac{WL_{i}}{s_{i}} \cdot \frac{s^{*}}{WL^{*}}$$

 U_i = Utilization of station i, WL_i = workload of station i (min/pc), s_i = number of servers at workstations i, and R_p^* = overall production rate (pc/min). The utilization of the bottleneck station is 100% at R_p^*

The <u>average station utilization</u> including transport system as

$$\overline{U} = \frac{\sum_{i=1}^{n+1} U_i}{n+1}$$
 \overline{U} = is an unweighted average of all workstations utilization.

Useful measure is <u>overall FMS utilization</u> which is based on number of servers at each station

$$\overline{U_s} = \frac{\sum_{i=1}^{n} s_i U_i}{\sum_{i=1}^{n} s_i} \quad \overline{U_s} = \text{overall FMS utilization}$$

Number of **busy servers** at each station is

$$BS_i = WL_i(R_p^*) = WL_i \frac{S^*}{WL^*}$$

 BS_i = number of busy servers on average at station i, and WL_i = workload at station i.

Problem 1

A flexible manufacturing cell consists of <u>two</u> machining workstations plus a <u>load/unload</u> station. The load/unload station is <u>station 1</u>. Station 2 performs milling operations and consists of <u>one server</u> (one CNC milling machine). Station 3 has <u>one server</u> that performs drilling (one CNC drill press). The three stations are connected by a part handling system that has <u>one work carrier</u>. The <u>mean transport time is 2.5 min</u>. The FMC produces three parts, A, B, and C. The part mix fractions and process routings for the three parts are presented in the table below. <u>The operation frequency $f_{ijk} = 1.0$ </u> for all operations.

Determine:

- a) Maximum production rate of the FMC,
- b) Corresponding production rates of each product
- c) Utilization of each machine in the system,
- d) Number of busy servers at each station.

Part j	Part mix p_j	Operation	Description	Station i	Process time
		k			t _{ijk}
A	0.2	1	Load	1	3 min
		2	Mill	2	20 min
		3	Drill	3	12 min
		4	Unload	1	2 min
В	0.3	1	Load	1	3 min
		2	Mill	2	15 min
		3	Drill	3	30 min
		4	Unload	1	2 min
С	0.5	1	Load	1	3 min
		2	Drill	3	14 min
		3	Mill	2	22 min
		4	Unload	1	2 min

Solution

a)
$$WL_i = \sum_j \sum_k t_{ijk} f_{ijk} p_j$$

$$WL_1 = (3+2)(0.2)(1.0) + (3+2)(0.3)(1.0) + (3+2)(0.5)(1.0) = 5.0 \text{ min}$$

$$WL_2 = 20(0.2)(1.0) + 15(0.3)(1.0) + 22(0.5)(1.0) = 19.5 \text{ min}$$

$$WL_3 = 12(0.2)(1.0) + 30(0.3)(1.0) + 14(0.5)(1.0) = 18.4 \text{ min}$$

$$n_t = \sum_i \sum_j \sum_k f_{ijk} p_j - 1$$

$$n_t = 3(0.2)(1.0) + 3(0.3)(1.0) + 3(0.5)(1.0) = 3,$$

$$WL_{n+1} = n_t t_{n+1}$$
 $WL_4 = 3(2.5) = 7.5 \text{ min}$

Bottleneck station has largest WL_i/s_i ratio

Station	WL_i/s_i ratio	•
1 (load/unload)	5.0/1 = 5.0 min	
2 (mill)	19.5/1 = 19.5 min	← Bottleneck
3 (drill)	18.4/1 = 18.4 min	
4 (material	7.5/1 = 7.5 min	
handling)		

$$R_{p}^{*} = \frac{S^{*}}{WL^{*}}$$

Bottleneck is station 2: R_p * = 1/19.5 = 0.05128 pc/min = **3.077 pc/hr** Individual part production rates can be obtained by multiplying

$$R_{pj}^* = p_j \left(R_p^*\right) = p_j \frac{s^*}{WL^*}$$
b)
$$R_{pA} = 0.05128(0.2) = 0.01026 \text{ pc/min} = \mathbf{0.6154 pc/hr}$$

$$R_{pB} = 0.05128(0.3) = 0.01538 \text{ pc/min} = \mathbf{0.9231 pc/hr}$$

$$R_{pC} = 0.05128(0.5) = 0.02564 \text{ pc/min} = \mathbf{1.5385 pc/hr}$$

$$U_{i} = \frac{WL_{i}}{S_{i}} \left(R_{p}^{*}\right) = \frac{WL_{i}}{S_{i}} \cdot \frac{S^{*}}{WL^{*}}$$

$$U_1 = (5.0/1)(0.05128) = 0.256 = 25.6\%$$

$$U_2 = (19.5/1)(0.05128) = 1.0 = 100\%$$

$$U_3 = (18.4/1)(0.05128) = 0.944 = 94.4\%$$

$$U_4 = (7.5/1)(0.05128) = 0.385 = 38.5\%$$

$$BS_{i} = WL_{i}(R_{p}^{*}) = WL_{i}\frac{S^{*}}{WL^{*}}$$

BS1 = (5.0)(0.05128) = 0.256 servers

$$BS2 = (19.5)(0.05128) = 1.0 \text{ servers}$$

$$BS3 = (18.4)(0.05128) = 0.944$$
 servers

$$BS4 = (7.5)(0.05128) = 0.385$$
 servers

Summary

- Basics of FMS
- Types and Layouts
- Issues for Implementation
- Quantitative Analysis: Bottleneck Model with operational and system design issues
- Solve Problem **End of Chapter** to grasp concept
- Extended Bottleneck (next lecture)